E = mc² is Dynamic mass – energy relationship in nature. (“Dynamic” means the particle is moving and hints it has momentum);

Next square both sides: E² = m²c ^4, namely: m²c² = E² / c², then, add a negative mark on both side: – m²c² = – E² / c²;

Add two Redundant items m²v² on both sides: m²v² – m²c² = m²v² – E² / c²;

Because m²v² = p², then, m²v² – m²c² = p² – E² / c²;

Because m = γm0, (pay attention here, it just means that you can consider the magnitude of the moving mass m is γm0, but not means the particle be rest). Square both sides: m² = m0² / (1 – v² / c²);

Then, m0²v² / (1 – v² / c²) – m0²c² / (1 – v² / c²) = p² – E² / c²;

A mathematical calculation: m0²v² / (1 – v² / c²) – m0²c² / (1 – v² / c²) = - m0²c²;

Then, - m0²c² = p² – E² / c²;

Transform it in math, then, E² = p²c² + (m0c²)².

It’s the so called energy – momentum equation.

……………………………………………………………………………..

If it’s the stationary situation, v = 0, so, no math game can be played. Then, it’s just a stationary mass – energy equation: E0 = m0c².

Liqiang Chen

aug 20, 2020