How to understand the energy - momentum equation in a natural way

  • Imagine you are sipping tea or coffee while discussing various issues with a broad and diverse network of students, colleagues, and friends brought together by the common bond of physics, graduate school, and the physics GRE.

Post Reply
User avatar
htam9876
Posts: 12
Joined: Mon Mar 04, 2019 8:16 pm

How to understand the energy - momentum equation in a natural way

Post by htam9876 » Mon Aug 17, 2020 7:36 pm

Below is how to understand the energy - momentum equation E² = p²c² + (m0c²)² in a natural way:

If the energy – momentum equation reflects the stationary situation, then, momentum p naturally equals to zero. Then, we got E² = 0 + (m0c²)², namely: E = m0c². It can be denoted exactly as E0 = m0c². This is the mass – energy equation in stationary situation;

If the energy – momentum equation reflects the dynamic situation, then, momentum p ≠ 0.
Transform the energy – momentum equation E² = p²c² + (m0c²)² into p² – E² / c² = - m0²c²,
- m0²c² = m0²v² / (1 – v² / c²) – m0²c² / (1 – v² / c²),
Because m² = m0² / (1 – v² / c²), then, - m0²c² = m²v² – m²c² = p² – E² / c²,
Because m²v² = p², then, – m²c² = – E² / c²,
Then E² = m²c ^4, namely: E = mc². This is the mass – energy equation in dynamic situation.

Since the energy – momentum equation E² = p²c² + (m0c²)² is generally applicable (to any particle), the stationary situation E0 = m0c² as well as the dynamic situation E = mc² is generally applicable (to any particle) too.


Liqiang Chen
Aug 18, 2020



Post Reply